ie jüngsten Meldungen von Volkswagen haben Deutschland überrascht und die Diskussionen über einen Industriestrompreis neu entfacht. In Kombination mit Ankündigungen, dass bei einem Wahlsieg der Republikaner in den USA bedeutend mehr Öl und Gas gefördert werden soll, erfordert dies einen kritischen Blick auf die Auswirkungen der aktuellen Energiekosten auf die deutsche und europäische Automobilindustrie.
Aktuelle Situation und Ausblick: Sind die Energiekosten in Deutschland und Europa derzeit ein entscheidender Nachteil für die Automobilindustrie? Drei zentrale Botschaften lassen sich aus den aktuellen Daten ableiten:
Seit den historischen Preisspitzen in Europa im Sommer 2022 sind nun bereits zwei Jahre vergangen. Grafik 1 vergleicht die Börsenpreise für Strom und Gas in wesentlichen Standorten der Automobilindustrie seit diesen Spitzen. Es zeigt sich, dass seit den Verwerfungen im Jahr 2022 wieder eine gewisse Normalität eingetreten ist. Dennoch bestehen weiterhin signifikante Preisunterschiede zwischen Deutschland bzw. Kontinentaleuropa und den USA. Der aktuelle Jahresdurchschnitt der vergleichbaren Börsenpreise für Strom liegt in Deutschland 136 % höher als in den USA. Ein vergleichbarer Börsenpreis für Gas liegt in Europa sogar 303 % höher als in den USA. Nur die von Kontinentaleuropa weitgehend entkoppelten Strommärkte in Skandinavien weisen geringere Unterschiede auf.
Grafik 2 zeigt die Entwicklung und den Vergleich zwischen Europa, USA, Japan und China im längeren Kontext. Bereits vor den Verwerfungen im Jahr 2022 waren die Preise in den USA strukturell niedriger als in Europa. Besonders seit dem Jahr 2017 lässt sich ein struktureller Unterschied feststellen. Waren bis 2017 die Unterschiede im Börsenpreis für Strom sowohl absolut als auch relativ gering, hat sich der Unterschied mittlerweile manifestiert. Im Jahresdurchschnitt 2024 liegt dieser Unterschied bei 87 € bzw. 329 %. Diese Unterschiede werden zumindest mittelfristig fortbestehen.
Auswirkungen auf die Automobilindustrie: Ein Großteil des Energieaufwands für die Fahrzeugproduktion liegt in der Zulieferkette, nur ca. 10-20 % fällt in der Endmontage bei den OEMs an. Bei einem Gesamtenergieeinsatz von ~20 MWh* für die Produktion eines durchschnittlichen Fahrzeugs zeigt sich, dass der Energieaufwand für den OEM in den eigenen Werken limitiert ist und nur einen geringeren Teil entlang der gesamten Wertschöpfungskette ausmacht. Die Mehrkosten für die Herstellung eines Fahrzeugs in Deutschland im Vergleich zu den USA liegen daher, bei den aktuellen Energiepreisen, im niedrigen dreistelligen Euro-Bereich. Ein Industriestrompreis hätte auf einen OEM daher nur einen geringen Effekt. Direkte Produktionsverlagerungen oder Standortentscheidungen werden dadurch nicht primär beeinflusst.
Ein anderes Bild ergibt sich bei den energieintensiven Unternehmen in der Zulieferkette. Hier kann der Energieaufwand im Vergleich zu der Fertigung bei den OEMs schnell einen signifikanten Anteil ausmachen. Eine Batterie mit einer Speicherkapazität von 50 kWh erfordert in der Herstellung einen Energieaufwand von bis zu 10 MWh (~100 bis 200 kWh Energieaufwand pro 1 kWh Speicherkapazität) und damit deutlich mehr als die Endmontage des Fahrzeugs durch den OEM. Es stellt sich jedoch die Frage, ob Zulieferer bei einem Industriestrompreis aufgrund ihrer geringeren Größe überhaupt davon profitieren könnten bzw. ob dieser für energieintensive Zulieferer ausreichende langfristige Planungssicherheit bietet. Ein Industriestrompreis wird aufgrund der hohen Kosten für den Staatshaushalt strukturelle Unterschiede nicht langfristig ausgleichen können.
Fazit: Zusammenfassend lässt sich feststellen, dass insbesondere der Standort Deutschland weiterhin von hohen Energiekosten belastet wird. Diese haben auch Auswirkungen auf die Automobilindustrie. Betrachtet man jedoch ausschließlich die Fertigung bei den OEMs, ist der Effekt der Energiekosten nur von sekundärer Bedeutung. Ein Industriestrompreis würde daher nur einen geringen Effekt haben und vor allem zu geringfügigen Mitnahmeeffekten führen. Darüber hinaus lenkt er von den Maßnahmen ab, die wesentlich für einen wettbewerbsfähigen Standort sind. Diese umfassen insbesondere Planungssicherheit, Bürokratieabbau und effektive Antworten auf Subventionsprogramme anderer Staaten.
*Exemplarischer Wert: Die exakte Höhe des Energieaufwandes ist insb. von dem Antriebkonzept sowie der Integration entlang der Wertschöpfungskette anhängig und kann hiervon abweichen. Der Energiemix zwischen den wesentlichen Energieträgern Strom und Gas kann ebenfalls variieren, wenngleich die Bedeutung von Strom immer weiter zunimmt.
any OEMs are struggling with accelerating BEV (battery electric vehicle) sales. The key to overcoming this challenge is differentiation by listening to what customers need.
As a result, we have asked BEV customers and considerers in Germany, The USA, China and Korea about what they care for during various steps of the BEV purchase journey. There are notable differences in how respondents in the four surveyed countries perceive BEVs.
Here are some of our key insights:
German BEV consideres are more sceptical than consumers from the US or China
While many German respondents regard electric vehicles as neutral or not good value for money, their Chinese and US American counterparts demonstrate a much more positive attitude towards BEVs.
Test drives play a crucial role to convince BEV prospects in all markets
The initial driving experience with a BEV is a key factor in shaping a positive consumer perception towards e-mobility. It is therefore crucial that OEMs and dealers join forces to put customers behind the steering wheel of their electric cars.
Many consumers don’t know right from the start whether they want to buy a BEV
Our survey shows that only a quarter of BEV customers and considerers knew right from the start that they want to purchase a BEV. Almost equal shares of respondents were convinced while interacting with the brand, discussing with their peers, or during the test drive.
Download the full insight now!
In our latest Webinar in cooperation with Civey, our experts show what is important to automotive customers along the entire process of buying an electric vehicle – from Germany to the USA to China and Korea. Enjoy watching!
Jonas Wagner, born in 1978, is a Partner and Managing Director of Berylls by AlixPartners (formerly Berylls Mad Media). With around 20 years of consulting experience in the automotive industry, Jonas is a trusted advisor for top management, specializing in strategy, organizational development and large transformation programs for leading, global automotive manufacturers.
Jonas excels in guiding automotive companies through the transformation of their sales and marketing functions. He has a proven track record in digitalizing customer interfaces to enhance customer experience, sales conversion and loyalty. His expertise includes introducing and implementing new sales and business models tailored to the evolving market landscape and developing data-driven sales and marketing organizations to optimize performance and efficiency. His expertise includes all on- and offline touchpoints as well as business segments, ranging from sales, after-sales, financial services to new business models.
Before joining Berylls, Jonas was a leading consultant within the Automotive Practise of Oliver Wyman, where he worked with global automotive manufacturers, enhancing their strategic initiatives and operations.
Jonas holds a degree in Business Administration from the Aarhus School of Business and the University of Mannheim, with a focus on International Management, Marketing, and Controlling. Combining deep industry knowledge with strategic acumen, Jonas Wagner is a valuable partner for automotive leaders navigating complex transformations.
Jonas Wagner, Jahrgang 1978, ist Partner und Geschäftsführer von Berylls by AlixPartners (ehemals Berylls Mad Media). Mit etwa 20 Jahren Beratungserfahrung in der Automobilindustrie ist Jonas ein vertrauenswürdiger Berater für das Top-Management, der sich auf Strategie, Organisationsentwicklung und große Transformationsprojekte für führende, globale Automobilhersteller spezialisiert hat.
Jonas ist ein Experte darin, Automobilunternehmen durch die Transformation ihrer Vertriebs- und Marketingfunktionen zu führen. Er hat eine nachweisliche Erfolgsbilanz in der Digitalisierung von Customer Journeys zur Verbesserung der Kundenerlebnisses, des Vertriebserfolges und der Kundenbindung. Seine Expertise umfasst die Einführung und Umsetzung neuer Vertriebs- und Geschäftsmodelle, sowie den Aufbau datengetriebener Vertriebs- und Marketingorganisationen zur Performance- und Effizienzsteigerung. Sein Expertise umfasst sämtliche On- und Offline Touchpoints, sowie alle Geschäftsbereiche, einschließlich Vertrieb, After-Sales, Finanzdienstleistungen sowie neue Geschäftsmodelle.
Vor seinem Einstieg bei Berylls war Jonas Berater der Automobil-Practise von Oliver Wyman, wo er mit globalen Automobilherstellern zusammenarbeitete und deren strategische Initiativen und Operations optimierte.
Jonas hat einen Abschluss in Betriebswirtschaftslehre von der Aarhus School of Business und der Universität Mannheim, mit einem Schwerpunkt auf Internationalem Management, Marketing und Controlling. Durch die Kombination von tiefem Branchenwissen und strategischem Scharfsinn ist Jonas Wagner ein wertvoller Partner für Manager im Automobilsektor, die komplexe Transformationen meistern.
ar dealers are almost as old as the car itself. And ‘peak car dealer’ was reached before ‘peak car’.
While the end of the car dealer has been forecasted for many years they are well alive and kicking. Customers, disruptors and OEMs alike have put pressure on the trade to adapt and improve. It seems the necessity to maintain returns for investors in a capital-intensive business has done its part, too.
Several brands have experimented with agency systems – with mixed results at best. And some innovators who launched direct-to-consumer networks had to learn which crucial role retailers play in a brand’s success and are now recruiting retail partners. Auto dealers are here to stay.
Nevertheless, the potential for further improvement always exists, also within a brand’s network, where a wide span of performance is still too common. Unfortunately, several brands seem to have neglected driving retail excellence – while pursuing innovative sales models, or due to cost pressures.
We at Berylls by AlixPartners believe that it is a success-critical task of a brand to (re-)strengthen their leadership and support of retail excellence in their networks. So, how can your brand help its network to continue improving? And how can Berylls help you to do that? Our Berylls Retail Excellence Toolbox focuses on the performance drivers with the biggest impact, it aligns operational improvements with your strategy and boosts innovation. And finally makes performance gains more sustainable. All this in a structured approach utilising the well-proven Building Blocks of our Toolbox.
Download the full insight now!
Arthur Kipferler (1963) started his career in 1989 at the Boston Consulting Group, where he consulted for 13 years in the automotive industry. After consulting, Arthur Kipferler held senior management positions at Toyota in Europe and the U.S. From 2013 to 2014, he was global head of the BMW Group’s Future Retail program. Subsequently, he had leading roles in strategy, corporate planning and transformation management at Jaguar Land Rover in Coventry, UK. Arthur Kipferler complements the expertise of the Berylls by AlixPartners (formerly Berylls Strategy Advisors) partner team in the fields of market & customer, technologies, sales, and digitalization, as well as in the development and implementation of corporate, product, and regional strategies.
Mechanical engineering, production engineering, at the Technical University of Munich (TUM); MBA in Strategy, Marketing and Organizational Behavior at INSEAD Business School, France.
he traction battery of a battery electric vehicle (BEV) is a pivotal component due to its substantial cost, major impact on vehicle performance, and high energy consumption during production.
OEMs are facing significant pressure from both consumers and regulators. Consumers are demanding more affordable electric vehicles with longer driving ranges. Five out of the top six concerns causing consumers to avoid BEVs relate to the battery: driving range (mentioned by 49% of respondents), charging time (48%), battery life (46%), battery replacement cost (37%), and affordability (35%). These figures underscore the critical role of the battery in consumer acceptance of BEVs. On the other hand, regulators also insist on ethically and sustainably sourced materials and the reduction of greenhouse gas emissions during production.
The battery pack can account for over 30% of the total vehicle cost, depending largely on the vehicle model and battery size. Furthermore, the BEV battery was identified as the component exposed to the highest level of risk regarding Germany’s Supply Chain Due Diligence Act (SDDA), significantly more than the second-highest risk component, i.e., the tires. This is principally because critical raw materials such as rare earths, cobalt, silicon, and aluminum are required to manufacture them. A notable factor is the heavy reliance on cobalt mining in the Democratic Republic of Congo (DRC), where child labor, workplace safety issues, and environmental emissions can be areas of concern. Similarly, the reliance on graphite extraction and refinement in China is fraught with risks due to the use of harmful chemicals and human rights violations. Nickel mining also presents critical environmental risks and threatens the rights and territories of local communities and indigenous people in Indonesia and Australia. The environmental impact of BEV batteries is also considerable, with an estimated 40–60% of total BEV upstream CO2 emissions stemming from the battery, including raw material extraction, logistics, and manufacturing. In specific terms, mining generates the second-highest level of emissions across the value chain.
The concentration of raw materials in unstable regions and the sourcing of materials far from manufacturing sites significantly weakens supply chain resilience. This vulnerability has been highlighted by recent global events such as the COVID-19 pandemic, the semiconductor shortage, and the Russia-Ukraine conflict. To mitigate these risks, OEMs must consider supply chain localization, insourcing, and investments in joint ventures to secure a stable supply of critical materials.
Currently, two dominant cathode active materials (CAM) are prevalent in the market: lithium nickel manganese cobalt (NMC) and lithium iron phosphate (LFP). In 2021, NMC held more than 50% of the market share, while LFP accounted for close to 30%. Approximately 85% of BEVs equipped with LFP battery cells are manufactured in China, whereas NMC cells are predominantly used in vehicles produced in Europe (IEA, 2023). In addition to the cathode, these cells also contain an anode typically made of graphite. Most OEMs currently utilize or plan to adopt both cell chemistries depending on vehicle models, with volume OEMs focusing on LFP for its lower price and premium OEMs preferring NMC for its higher energy density. The CAM is the most expensive component in the battery, accounting for approximately 60% of the cost for NMC cells and 25% for LFP cells. Within the CAM, lithium, nickel, and cobalt are the primary cost drivers due to their material content and current raw material prices.
In addition to material costs, OEMs and battery manufacturers face two primary challenges in the battery raw materials value chain: supply chain resilience and adherence to ESG criteria.
Currently, the production of raw materials is concentrated in a few regions: Australia accounts for 48% of global lithium production, Indonesia for 50% of nickel, and the Democratic Republic of Congo for 74% of cobalt. The instability in these mining regions, coupled with the distance to European and North American vehicle manufacturing sites, heightens the risk of supply chain disruption. Despite the limited availability of the currently most critical materials (lithium, nickel, cobalt) in Europe, companies such as Rock Tech Lithium and Vulcan Energy are developing lithium mines in Germany and have established supplier contracts with Mercedes-Benz and Volkswagen, with commercial delivery expected to begin in 2026. Additionally, BMW has an agreement with European Lithium to purchase 100% of the lithium hydroxide produced in the Austrian Wolfsberg Lithium Project, which is expected to commence in 2026. However, the ethical, sustainable, and local sourcing of nickel and cobalt remains challenging for the European market.
For the North American market, lithium is less of a problem given the material’s abundance in Chile and Argentina. However, nickel and cobalt sourcing remain challenging. Despite limited production today, Canada and Brazil, with significant reserves (18% and 12% respectively), will play a vital role in the future of US nearshoring. Tesla and Volkswagen already source nickel from the Sudbury area in Ontario, Canada. Furthermore, Volkswagen and Stellantis have invested in nickel mining in Brazil, and Tesla has entered into a supplier agreement with Talon Metals for nickel sourced from the Tamarack Nickel Project in Minnesota, USA. Sourcing ethical and sustainable cobalt remains a challenge for the North American market. For more data, see Appendix 1.
We observe four primary trends addressing the above-mentioned perspectives.
1. Supply chain traceability and direct sourcing are key focuses. Many OEMs, including BMW, Volkswagen, and Tesla, aim to source raw materials directly from suppliers rather than relying on cell manufacturers. This approach improves supply chain traceability and enables OEMs to maintain better control over their supply chains. For example, BMW secures cobalt directly from the Murrin Murrin mine in Australia and the Bou-Azzer mine in Morocco.
2. The benefits of supply chain localization span the entire battery value chain. OEMs are working to achieve this across mining, refining, manufacturing, and recycling to create closed loops with complete visibility, control, and enhanced supply chain resilience. One example is Northvolt’s partnership with Galp to establish a lithium conversion plant in Portugal, which aims to reduce the environmental impact, mitigate geopolitical risks, and diversify supply.
3. There is a significant trend towards acquisitions, investments, joint ventures, and in-sourcing. Volkswagen, for instance, intends to create a joint venture with Huayou Cobalt and the Tsinghsan Group for nickel and cobalt production in Indonesia to support their Chinese manufacturing needs. BYD is also rumored to be considering acquiring six African lithium mines to secure its supply for the next decade.
4. Recycling is a major focus for all evaluated OEMs, including BMW, VW, Tesla, BYD, and Mercedes, with German manufacturers placing particular emphasis on this factor. These companies are striving for a closed-loop material cycle to ensure sustainability. For example, BMW prefers forming partnerships with recyclers rather than investing directly in mines, a fact exemplified by their joint recycling venture in China. Similarly, Tesla has established recycling initiatives at its Gigafactory 1 in Nevada, while Volkswagen is building a dedicated recycling plant in Salzgitter, Germany. Companies in other parts of the battery value chain are enhancing their recycling efforts as well. For example, Northvolt is constructing a new recycling plant and aims to use 50% recycled materials in its batteries by 2030.
However, despite these initiatives, their impact on the overall raw materials supply in the short to medium term is expected to be limited. The demand for raw materials significantly exceeds the supply from end-of-life batteries, with 70% of the recyclable material currently coming from production scrap. Moreover, production capacity in Europe and the US remains inadequate.
Two significant regulations are pressuring both OEMs and suppliers to improve their battery supply chains: the SDDA, which became effective on January 1, 2023, and the EU’s Corporate Sustainability Due Diligence Directive (CSDDD), expected to come into force in 2025 or 2026. We anticipate that companies along the value chain will continue their efforts to sustainably source lithium, nickel, and cobalt to comply with these regulations. However, the primary optimism is focused on technological advancements through two main paths.
First, in terms of cell chemistries, the adoption of lithium iron phosphate (LFP) cells is already widespread in China. With advancements in silicon anodes and battery pack design, LFP cells are projected to achieve energy density levels comparable to today’s NMC cells in the foreseeable future. Since LFP cells do not contain nickel or cobalt, they could greatly enhance supply chain resilience and reduce ESG concerns. Efforts are also being made to further develop NMC cells that minimize cobalt usage. Specifically, the novel approach of NMx chemistry aims to eliminate cobalt entirely, making these cells more sustainable and slightly less expensive. Although some manufacturers have already introduced NMx cells, they have not yet been widely adopted in the market. Sodium-ion batteries, which use sodium instead of lithium, are also in the developmental stage. This technology, while not yet widely embraced, has the potential to utilize abundant materials as alternatives to lithium, such as sodium and other materials. For instance, Altris recently unveiled a sodium-ion cell with an energy density of 160 Wh/kg, using a Prussian White cathode. Sodium-ion cells are expected to be significantly cheaper than the current lithium-based chemistries and offer safer batteries. Although some budget BEVs in China use sodium-ion cells, their current energy density makes them more suitable for stationary storage solutions. As development continues, sodium-ion batteries could localize supply chains, reduce mining-related ESG issues, and address major consumer concerns.
Second, when it comes to sourcing, innovative mining methods such as direct lithium extraction (DLE) are being increasingly utilized. DLE enables lithium to be extracted from brine without the need for evaporation ponds. This technological advance is particularly useful in countries such as Germany, France, Italy, and the UK, where the climate does not permit the use of evaporation ponds commonly employed in regions such as South America. The DLE method makes it possible to extract lithium and localize its supply in Europe. The expansion of recycling is also crucial. Given the limited availability of end-of-life BEV batteries, around 70% of recyclable material currently comes from cell production scrap. In fact, end-of-life batteries are not expected to make up the majority of recyclable material until after 2030. Combined with current BEV demand levels, recycling is unlikely to significantly impact overall material sourcing in the short term. Despite extensive initiatives, these efforts are expected to have only a limited impact on the overall supply of raw materials in the short to medium term, as demand significantly exceeds the current supply of end-of-life batteries.
Appendix 1 – production and reserves per country
(Tonnes) | Production (2023E) | Reserves |
Lithium | Total: 180,000 Australia: 86,000 Chile: 44,000 China: 33,000 Argentina: 9,600 Europe: Insignificant | Total: 28,000,000 Chile: 9,300,000 Australia: 6,200,000 Argentina: 3,600,000 China: 3,000,000 Europe: Insignificant |
Natural graphite | Total: 1,680,000 China: 1,230,000 Madagascar: 100,000 Mozambique: 96,000 Brazil: 73,000 Canada: 3,500 Russia: 16,000 | Total: 280,000,000 China: 78,000,000 Brazil: 74,000,000 Mozambique: 25,000,000 Madagascar: 24,000,000 Canada: 5,700,000 Russia: 14,000,000 |
Nickel | Total: 3,600,000 Indonesia: 1,800,000 Philippines: 400,000 New Caledonia: 230,000 Russia: 200,000 Canada: 180,000 Australia: 160,000 Brazil: 89,000 | Total: >130,000,000 Indonesia: 55,000,000 Australia: 24,000,000 Brazil: 16,000,000 Russia: 8,300,000 New Caledonia: 7,100,000 Philippines: 4,800,000 Canada: 2,200,000 |
Cobalt | Total: 230,000 DRC: 170,000 Indonesia: 17,000 Russia: 8,800 Australia: 4,600 North America: Insignificant | Total: 11,000,000 DRC: 6,000,000 Australia: 1,700,000 Indonesia: 500,000 Cuba: 500,000 Russia: 250,000 North America: Insignificant |
Appendix 2 – Battery price forecast
Source: J.P. Morgan Nickel Dashboard, 2024
Dr. Alexander Timmer (1981) joined Berylls by AlixPartners (formerly Berylls Strategy Advisors), an international strategy consultancy specializing in the automotive industry, as a partner in May 2021. He is an expert in market entry and growth strategies, M&A and can look back on many years of experience in the operations environment. Dr. Alexander Timmer has been advising automotive manufacturers and suppliers in a global context since 2012. He has in-depth expert knowledge in the areas of portfolio planning, development and production. His other areas of expertise include digitalization and the complex of topics surrounding electromobility.
Prior to joining Berylls Strategy Advisors, he worked for Booz & Company and PwC Strategy&, among others, as a member of the management team in North America, Asia and Europe.
After studying mechanical engineering at RWTH Aachen University and Chalmers University in Gothenburg, he earned his doctorate in manufacturing technologies at the Machine Tool Laboratory of RWTH Aachen University.